| Dimension | SI Unit | Math Symbol(s) | Description |
| Symbol | Name(s) | Symbol | Name |
| L-3T-1M0Q0Θ0 | Catalytic Concentration | kat/m3 | katals per cubic meter | ? | catalytic activity / unit volume [z/V]; 1 mkat/L
|
| L-3T0M0Q0Θ0 | Molarity, [Molar] Concentration | mol/m3 | moles per cubic meter | ci | moles / unit volume [nm/V]; 1 mmol/L |
| mol/L, M | moles per liter | moles / liter [nm/V]; reciprocal of molar volume [1/Vm]; 1 kmol/m3 |
Number Concentration | m-3 | per cubic meter | Ci | number of particles per unit volume [n/V] |
| Acidity,Basicity | * | power of Hydrogen | pH, PH | approximately, negative decimal logarithm of hydrogen molar concentration [-log10 cH]; pure H2O has pH = 7.0; acids are less (lemon pH ≈ 2.2), bases are more (bleach pH ≈ 13.0) |
| L-3T0M0Q1Θ0 | Charge Density | C/m3 | coulombs per cubic meter | ρq | electric charge / volume [Q/V] |
| L-3T0M1Q0Θ0 | [Mass] Density | kg/m3 | kilograms per cubic meter | ρ | mass / unit volume [m/V]; 1 kg/m3 = 0.0010 kg/L = 1 g/L |
| L-3T1M1Q0Θ0 | Toxic Exposure | s kg/m3 | second-kilograms per cubic meter | E | mass density * time period [ρ•t]; may be multiplied by "toxicity factor" for the type of toxin
|
| L-2-1T1M-1Q2Θ0 | Conductivity, Admittivity, Susceptivity | S/m | siemans per meter | κ, ?, ? | conductance * distance / area [C•r/A] = reciprocal of resistivity [1/ρ]; 1 S/m = 1 A/(V m) |
| L-3T2M-1Q2Θ0 | [Electric] Permittivity | F/m | ferads per meter | ε | capacitance / distance [C/r] |
| vacuum permittivity | ε0 | [1/c02μ0]; ≈ 8.854187817 pF/m |
| L-2T-2M1-1Q0Θ-1 | Specific Heat Capacity | J/(K kg) | joules per kelvin per kilogram | h | heat capacity / mass [H/m] = energy / temperature / mass [E/(T•m)] |
| L-2T-2M1Q0Θ0 | Force Density, Specific Weight | N/m3 | newtons per cubic meter | f | force / volume [F/V] = acceleration * density [a•ρ] = standard gravity * density [g•ρ] |
| L-2T-1M0Q1Θ0 | Current Density | A/m2 | amperes per square meter | J | current / directed area [I/S] = charge density * velocity [ρq•v]; electric field * conductivity [E•κ] |
| L-2T-1M1Q0Θ0 | Momentum Density | N s/m3 | newton seconds per cubic meter | g | momentum / volume [p/V]; permittivity * electric field * magnetic field (ε•E×B |
| Advective Flux | ? | volumetric flux * density [q•ρ] = velocity * density [v•ρ] |
| Mass Flux | kg Hz/m2 | kilogram hertz per square meter | Jm | mass flow rate / directed area [ṁ/S] = momentum / volume [p/V] |
| L-2T0M-1Q2Θ0 | Reluctance | H-1 | per Henry | R | current / magnetic flux [I/ΦB] = reciprocal of permeance [1/P] |
| L-2T0M0Q1Θ0 | Polarization Density | C/m2 | coulombs per square meter | Pe | electric dipole / volume [δp/V]; vacuum permittivity * electric susceptibility * electric field [ε0χeE] |
Electric Displacement | D | vacuum permittivity * electric field + polarization density [ε0E+Pe = ε(1+χe)E] |
| L-2T1M-1Q2Θ0 | Conductance, Admittance, Subsceptance | S | Sieman | G, Y, B | reciprocal ohm [1/R] = 1/Ω; current / voltage [I/V] |
Magnetic Capacitance | Ω-1 | per ohms | xC | reciprocal of (angular frequency * magnetic capacity) [1/(ω•CM)] |
| L-2T2M-1Q0Θ0 | Coldness | nat/J | natural entropy per joule | βT | thermodynamic beta = change in (entropy / energy) / Boltzman's constant [δH/(δE•kB)]; 1 nat/J ≈ 1.442969504089 Sh/J |
| L-2T2M-1Q1Θ0 | Charge Affinity | C/J | coulombs per joule | εp | reciprocal voltage [1/V] = charge / energy [Q/E] = current / power [I/P] |
| L-2T2M-1Q2Θ0 | Capacitance | F | ferad | C | charge / electric potential [Q/V]; reciprocal of elastance [1/P]; 1 F = 1 J/V2 |
| C2/J | square coulombs per joule | square charge / energy [Q2/E]; 1 C2/J = 1 F |
| L1-2T-2M1Q0Θ-1 | Volumetric Heat Capacity | J/(K m3) | joules per kelvin per cubic meter | VHC | heat capacity / volume [H/V] = molar heat capacity / molar volume [Hm/Vm] = energy / temperature / volume [E/(T•V)] |
| N/(m2K) | newtons per square meter per kelvin | force / area / temperature [|F|/(A•T)] = pressure / temperature [|P|/T]; 1 J/(Km3) |
| Entropy Density | nat/m3 | nats per cubic meter | s | entropy / volume [H/V]; 1 nat/m3 ≈ 13.80648 yJ/(Km3) |
| L1-2T-2M1Q0Θ0 | Pressure, Stress, Energy Density | Pa | Pascal | P | force / area [F/A] |
| N/m2 | newton per square meter |
| J/m3 | joules per cubic meter | ρE | energy / volume [E/V] |
| L1-2T-1M0Q1Θ0 | Magnetic Field | N/Wb | newtons per weber | H | force / electric potential / time [F/(V•t)]; 1 A/m; 1 T•m/H |
| T•m/H | tesla meters per second | magnetic flux density / permeability [B/μ]; 1 A/m; 1 N/Wb |
| Magnetization | A/m | amperes per meter | M | magnetic dipole moment / volume [μ/V] = magnetic susceptibility * magnetic field [χmH] |
| L-1T-1M1Q0Θ0 | [Dynamic|Shear] Viscosity | kg/(m s) | kilograms per meter per second | η, μ | mass / absition [m/|A|]; 1 Pa•s |
| L1-2T1-2M1Q0Θ0 | N s/m2 | newton second per square meter | momentum / area [|p|/A]; 1 Pa•s |
| PI | poiseuille | pressure * time [|P|•t] = reciprocal of fluidity [1/φ]; 1 Pa•s |
| L1-2T0M-1Q2Θ0 | Reluctivity | m/H | meters per henry | ? | reciprocal permeability [1/μ] = conductance * speed [G•|v|]; 1 S•m/s |
| L-1T0M0Q0Θ0 | Wavenumber | m-1 | per meter | ν | cycles / distance [n/r] = reciprocal wavelength [1/λ] = frequency / phase velocity [f/|vφ| = ν/|vφ|] |
| Pixel Density | PPI, DPI | pixels [dots] per inch | ?
| Usually, a color pixel consists of 3 dots, so DPI and PPI are different for color images. |
| Optical Power | diop, dpt | diopter | φ | reciprocal of focal-length [1/|r| = 1/f]; 1 m-1 |
| L1-2T0M0Q0Θ0 | Angular Wavenumber | rad/m | radians per meter | k | 2π / wavelength [2π/λ] = angular velocity / phase velocity [ω/|vφ|]; for a photon, k = 2πE/(hc0) |
| L-1T2M-1Q0Θ0 | Fuel Economy | m/J | meters per joule | FE | "energy efficiency in transportation"; distance / energy [r/E] = reciprocal force [1/|F|]; 1 N-1; 1 m/J = 3600 m/(W•hr) ≈ 753.847530422 mi/galUS
|
| L-1T2M-1Q1Θ0 | Electric Strain | C/N | coulombs per newton | d | charge / force [Q/F] = reciprocal electric field [1/E] |
| m/V | meters per volt | distance / electric potential [r/V]; 1 m/V = 1 C/N |
| L1-1T-3M0Q0Θ0 | Angular Jerk | rad/s3 | radians per cubic second | ζ | angular acceleration / time period [α/t] |
| L2-2T-3M1Q0Θ0 | Luminance | W/m2 | watts per square meter | ? | radiant exposure / time [He/t] |
| cd/m2 | candella per square meter | Lv | luminous flux / solid angle / directed area [Φv/(Ω•S)] = luminous intensity / directed area [Iv/S] = 1 W/m2 @ 540 THz
|
| Illuminance | lx | lux | Ev | luminous flux / area [Φv/A]; 1 lm/m2 ≈ 1.46413 mW/m2 @ 540 THz |
| Irradiance | W/m2 | watts per square meter | Ee | radiant flux / area [Φe/A] |
| Radiance | W/(sr m2) | watts per steradian per square meter | Le | radiant flux / solid angle / directed area [Φ/Ω/S] = radiant intensity / directed area [Ie/S] |
| L1-1T-2M0Q0Θ0 | Angular Acceleration | rad/s2 | radians per square second | α | angular velocity / time period [ω/t] |
| L2-2T-2M1-1Q0Θ0 | Specific Radiant Exposure | J/(m2kg) | joules per square meter per kilogram | ? | radiant exposure / mass [He/m] = force / leverage [|F|/|Λ|] = square frequency [f2 = ν2]; 1 J/(m2kg) = 1 N/(m•kg) = 1 Hz2
|
| L2-2T-2M1Q0Θ0 | Radiant Exposure | J/m2 | joules per square meter | He | irradiance * time [Eet] = radiant energy / area [Qe/A] |
Luminous Exposure | lx s | lux-second | Hv | illuminance * time [Evt] = luminous energy / area [Qv/A]; 1 lx•s ≈ 1.46413 mJ/m2 @ 540 THz
|
Spectral Irradianceν | W/(m2Hz) | watts per square meter per hertz | Ee,v | irradiance / frequency [Ee/ν] = radiance * solid angle / frequency [Le•Ω/ν] |
Spectral Radianceν | W/ (sr m2Hz) | watts per steradian per square meter per hertz
| Le,v | radiance / frequency [Le/ν] = radiant flux / solid angle / area / frequency [Φe/(Ω•S•ν)] |
| L0T-1M-1Q0Θ0 | Specific Activity | Bq/kg | bacquerel per kilogram | a | decay constant * Avagrado's number / molar mass [λ•NA/mm] = activity / mass [A/m]; natural log 2 / half-life * Avagrado's number / molar mass [(NAln 2)/(t1/2mm)]; 1 Hz/kg |
| (s kg)-1 | per second per kilogram | reciprocal of mass exposure [1/?]; 1 (s kg)-1 = 1 Hz/kg = 1 Bq/kg |
| L0T-1M0Q0Θ0 | Frequency | Hz | hertz | f, ν | cycles per second [n/t]; 1 s-1 |
| [Radio]Activity | Bq | becquerel | A | nuclear decays per time period [n/t]; 1 Hz |
| Catalytic Activity | kat | katal
| z | quantity of substance that converts another substance at 1 mole / second |
| L2-2T-1M1-1Q0Θ0 | Fluid Exchange Rate | Pa/PI | pascals per poiseuille
| ? | force / viscosity / area [|F|/(η•A)] = pressure / viscosity [|P|/η]; 1 Hz |
ACH
| air changes per hour | fluid flow rate / volume [Q/V]; 277.77 μHz |
| L1-1T-1M0Q0Θ0 | Angular Speed | rad/s | radians per second | ω | 2π * frequency [2πf = 2πν] = tangential speed / radius [|v|/r]; 1 rad/s ≈ 57.2957795 °/s |
| Angular Velocity | ω | (r × v) / r2; the omega vector is perpendicular to both r and v; 1 rad/s ≈ 159.154943 mHz
|
| L0T-1M0Q1Θ0 | [Electric] Current | A | ampere | I | electric charge / time [Q/t] = voltage / resistance [V/R]; 1 A = 1 C/s = V/Ω |
| L2-2T-1M1Q-1Θ0 | Magnetic Flux Density | T | tesla | B | magnetic flux / directed area [ΦB/S]; 1 T = 1 Wb/m2 |
| Wb/m2 | webers per square meter |
| L0T-1M1Q0Θ0 | Mass Flow Rate, Mass Current | kg/s | kilograms per second | ṁ | mass / time [m/t] = density * fluid flow rate [ρ•|Q|]; density * volumetric flux * directed area [ρ•q•S]; 1 kg/s = 1 kg•Hz |
| L0T0M-1Q1Θ0 | Ionizing Exposure, Specific Charge | C/kg | coulombs per kilogram | γ | charge / mass [Q/m] |
Gyromagnetic Ratio | e-/me | electron charge-to-mass ratio | γe | ≈ -175.88200 GC/kg |
| p+/mp | proton charge-to-mass ratio | γp | ≈ +95.788332 MC/kg |
| L3-3T0M0Q0Θ-1 | Coefficient of Thermal Expansion | m/(mK) m2/(m2K) m3/(m3K)
| dim meters per dim meter per kelvin | αL, αA, αV | change in (length / temperature) / length [(δr/δT)/r] change in (area / temperature) / area [(δA/δT)/A] change in (volume / temperature) / volume [(δV/δT)/V]
|
| Coldness | 1/K | reciprocal kelvin | βT | reciprocal temperature [1/T] = thermodynamic beta * Boltzman's constant [β•kB]; 1/K ≈ 13.80648 ynat/J |
| L0T0M1-1Q0Θ0 | Mass Fraction | kg/kg | parts per million|billion... | wi | component mass / total mass[mi/m] |
| Mass Ratio | ζi | component mass / remaining mass [mi/(m-mi)] |
| L0T0M1-1Q0Θ1-1 | Adiabatic Index | JK/(JK) | joule kelvins per joule-kelvin | γ | ratio of fixed-pressure to fixed-volume heat capacities [Cp/Cv] |
| L1-1T0M0Q0Θ0 | Plane Angle | rad | radian | θ, φ | 2π radians per revolution; 1 rad ≈ 57.2957795131° |
| ? | π | pi | | ratio of circumference of a circle to its diameter; π ≈ 3.14159265359 |
| L1-1T1-1M0Q1-1Θ0 | Magnetic Susceptibility | | magnetic susceptibility | χm | magnetization / magnetic field [M/H]; vacuum χm = 0 |
| relative permeability | μr | 1 + magnetic susceptibility [1+χm] = permeability / vacuum permeability [μ/μ0] |
Magnetic Modulus? | | Mm ?
| reciprocal relative permeability [1/μr] |
| L2-2T0M0Q0Θ0 | Solid Angle | sr | steradian | Ω | 4π steradians per sphere; 2π/3 sr per cube face measured from cube center |
| L2-2T0M0Q1-1Θ0 | Electric Susceptibility | | electric susceptibility | χe | polarization density / electric field / vacuum permittivity [Pe/(E•ε0)]; polarization density / (electric displacement - polarization density) [Pe/(D-Pe)]; vacuum χe = 0 |
| relative permeability | εr | 1 + electric susceptibility [1+χe] = permittivity / vacuum permittivity [ε/ε0] |
| Electric Modulus | | Me | reciprocal relative permittivity [1/εr] |
| L2-2T2-2M1-1Q0Θ0 | Energy Effeciency, Energy Intensity
| J/J | joules per joule | ? | energy efficiency = output energy / input energy [Eo/Ei]; energy intensity = input energy / output energy [Ei/Eo] |
| L2-2T3-3M1-1Q0Θ0 | Power Ratio, Power Effeciency, Power Intensity | W/W | watts per watt | ? | power efficiency = output power / input power [Po/Pi]; power intensity = input power / output power [Pi/Po] |
| dB | decibel | Lp | 10 log10 (measured power / reference power) [10 log10 (P/P0) = 10 log10 (V2/V02)] |
| Lf | 20 log10 (measured field / reference field) [20 log10 (V/V0)] |
| L3-3T0M0Q0Θ0 | Volume Fraction | m3/m3 | cubic meters per cubic meter | φi | component volume / total volume [Vi/V] |
| L0T0M0Q0Θ1 | Temperature | K | kelvin | T | 0 K is 273.16 °C below triple point of water (which is defined as 0.01 °C) |
| L0T0M0Q1Θ0 | [Electric] Charge | C | coulomb | Q | electric current * time [I•t]; charge of approximately 6.24150913 Ee (quintillion protons) |
| L0T0M1Q0Θ0 | Mass, Inertia | kg | kilogram | m | originally, mass of one liter of water at 4°C at sea-level pressure |
| eV/c2 | electron-volts per light-speed squared | ? | 1 eV/c2 ≈ 160.217662 zJ ≈ 1.78266191•10-36 g (per Einstein's mass/energy equivalence) |
| L0T1M0Q0Θ0 | Time | s | second | t | 9192631770 cycles of caesium-133 (133Ce) groundstate hyperfine splitting period (at 0 K) |
| F Ω | farad ohm | capacitance * resistance [C•R] = inductance / resistance [L/R]; 1 H/Ω = 1 s |
| L0T1M0Q0Θ1 | ??? | K s | kelvin-second | kDTS | Dam Thanh Son limit = viscosity / entropy density [η/s]; reduced plank constant / 4π / Boltzman's constant [ℏ/(4π•kB] ≈ 607.8306 fKs |
| L0T1M1Q0Θ0 | Mass Exposure | kg/Bq | kilogram per bacquerel | ? | reciprocal specific activity [1/a] = mass / activity [m/A] = action / absorb dose [S/D]; 1 Js/Gy |
| s kg | second-kilogram | time * mass [t•m] = toxic exposure * volume [E•V] = payload distance / speed [Λ/v]; 1 kg/Hz
|
| L0T2M0Q0Θ0 | ? | s2 | square second | t2 | time period / frequency [t/f = t/ν]; 1 s/Hz |
| F H | farad henry | capacitance * inductance [C•L]; 1 s2 |
| L1T-3M0Q0Θ0 | Jerk | m/s3 | meters per cubic second | j | acceleration / time period [a/t] |
| L1T-3M1Q0Θ-1 | Thermal Conductivity | W/(m•K) | watts per meter-kelvin | ? | spectral flux in wavelength / temperature [Φe,λ/T] |
| N/(s•K) | newtons per second-kelvin | yank / temperature [Y/T]; 1 W/(m•K) |
| L1T-3M1Q0Θ0 | Yank | N/s | newtons per second | Y | force / time period [F/t] = energy / absition [E/A]; 1 J/(m•s)
|
| Spectral Fluxλ | W/m | watts per meter | Φe,λ | radiant flux / wavelength [Φe/λ] = power / distance [P/|r|]
|
| L1T-2M0Q0Θ0 | Acceleration | m/s2 | meters per square second | a, g | velocity / time period [v/t]; standard (Earth surface) gravity [gc]= 9.806650 m/s2 |
| Specific Force | N/kg | newtons per kilogram | |a| | force / mass [|F|/m] |
| L1T-2M1Q-1Θ0 | Electric Field, Electric Flux Density | N/C | newtons per coulomb | E | force / charge [F/Q] |
| V/m | volts per meter | electric potential / distance [V/r]; 1 N/C |
| C/(F•m) | coulombs per ferad-meter | (electric displacement - polarization density) / vacuum permittivity [(D-Pe)/ε0] electric displacement / permittivity [D/ε]; 1 N/C |
| J/(C•m) | joules per coulomb-meter | energy / charge / distance [E/(Q•r)]; 1 N/C |
| W/(A•m) | watts per ampere-meter | power / current / distance [P/(I•r)] = power / charge / velocity [P/(Q•v)]; 1 N/C |
| L1T-2M1Q0Θ-1 | Thermic Force? | N/K | newtons per kelvin | ? | force / temperature [|F|/T] = delta (entropy / distance) [δH/(δr)] |
| L1T-2M1Q0Θ0 | Force, Weight | N | newton | F | mass * acceleration [m•a] = momentum / time period [p/t]; 1 kg•m/s2; magnetic flux * magnetic field [ΦBH] = charge * electric field [Q•E]; 1 N = Wb•A/m = 1 C•V/m |
Fuel Consumption
| J/m | joules per meter | FC | "energy intensity in transportation"; energy / distance [E/r]; 1 N; 322 J/m ≈ 1 Lpetrol/(100 km)
|
| kW hr/km | kilowatt-hours per kilometer | energy / distance [E/r]; 1 kW•hr/km = 3600 J/m = 3600 N
|
| L1T-1M0Q0Θ0 | Speed, Velocity | m/s | meters per second | c, v, v | distance / time period [r/t]; 1 m/s = 1 kL•Hz/m2 |
| | light-speed | c0 | speed of light in vacuum: 299792458 m/s (by definition) |
| Volumetric Flux | L Hz/m2 | liter hertz per square meter | q | fluid flow rate / directed area [Q/S]; 1 L•Hz/m2 = 1 mm/s |
| L1T-1M1-1Q0Θ0 | Specific Momentum | N s/kg | newton-seconds per kilogram
| v | momentum / mass [p/m]; 1 m/s
|
| L1T-1M0Q1Θ0 | Magnetic Pole Strength | A m | ampere-meters | qm | magnetization * directed area [M•S] |
| C m/s | coulomb-meters per second
| charge * speed [Q•|v|]; 1 Am
|
| L1T-1M1Q-1Θ0 | Magnetic Potential | T•m | tesla-meters | A | curl of magnetic flux density [∇×B] |
| N/A | newtons per ampere | force / current [F/I] = momentum / charge [q/Q]; 1 T•m |
| Wb/m | webers per meter | magnetic flux / distance [ΦB/r]; 1 T•m |
|
| L1T-1M1Q0Θ0 | Momentum | kg m/s | kilogram-meters per second
| p | mass * velocity [m•v] = √2 * mass * kinetic energy [√2m•Ek] = leverage / time [d/t] = density * volume * phase velocity [ρ•V•v]; 1 N•s
|
| Impulse | N s | newton-second | delta momentum [δp] = force * time period [f•t] = charge * magnetic potential [Q•A]; 1 kg•m/s = 1 N•s = C•N/A |
| L1T0M0Q0Θ0 | Length | m | meter | r, d, x, y, z | 1/299792458 of a light-second; approximately 1/40000000 of Earth's polar circumference |
| Wavelength | λ | distance of 1 cycle in a wave; phase velocity / frequency [|vφ|/f = |vφ|/ν]; for a photon, λ = c0/ν |
| ly | light-year | ? | distance traveled in 1 Julian year (365.25 Earth days) at light-speed; 9.46073047258080 Pm |
| L1T0M0Q1Θ0 | Electric Dipole Moment | C m | coulomb-meters | Δp | (charge+ - charge-) / 2 / (position+ - position-) [δQ/(2r)]
|
| L1T0M1Q-2Θ0 | [Magnetic] Permeability | H/m | henries per meter | μ | inductance / distance [L/r] = reciprocal of reluctivity [1/?] |
| N/A2 | newtons per square ampere | force / square current [|F|/Q2]; 1 H/m; relative permeability * vacuum permeability [μrμ0] |
| | vacuum permeability | μ0 | 400 π nH/m ≈ 1.256637061 μH/m |
| L1T0M1Q0Θ0 | Payload Distance | m kg | meter-kilogram | Λ ? | distance * mass [r•m] = momentum * time [p•t] |
| Leverage | arm-length * mass [r•m] = rotational inertia / radius [I/r] |
| N/Hz2 | newtons per square hertz | torque / acceleration [τ/a = (a × τ)/a2]; 1 m•kg |
| L1T1M-1Q0Θ0 | Fluidity | m•s/kg | meter-seconds per kilogram
| φ | distance * time / mass [r•t/m] = absition / mass [|A|/m] |
| PI-1 | reciprocal poiseuille | reciprocal viscosity [1/η]; 1 PI-1 = 1 Hz/Pa |
| L1T1M0Q0Θ0 | Absition, Absement | m s | meter second | A | distance * time period [r•t] |
| L2-1T2M-1Q0Θ0 | Compressability | Pa-1 | reciprocal pascal | β | reciprocal pressure [1/|P|] = area / force [A/|F|] |
| m2/N | square meters per newton | area / force [A/|F|] = 1 / density / square phase velocity [1/(ρv2)] |
| m3/J | cubic meters per joule | volume / energy [V/E]; 1 m3/J = 1 kL/J |
| L2T-3M1-1Q0Θ0 | Specific Power | W/kg | watts per kilogram | ? | power / mass [P/m] = energy / mass exposure [E/(m•t)]; 1 J/(kg•s); 1 Gy/s |
| Absorbtion Rate | Gy/s | grays per second | absorbed dose / time period [D/t] = absorbed dose * activity [D•A]; 1 Gy•Bq; 1 W/kg |
| Dose Rate | rem/dy | rems per day | 1/24 rem/hr = 1/86400 rem/s = 11.5740 μrem/s = 115.740 nSv/s |
| | MET | metabolic equivalent of task | energy / mass / time [E/(m•t)]; 1 kcal/(kg•hr) = 1.162 W/kg; 1 MET ≈ human sitting |
| L2T-3M1Q0Θ0 | Rotatum | N m/s | newton-meters per second | R | delta torque / time period [δτ/t] = rotational inertia * angular jerk [I•ζ] = force * velocity [F×v] |
| Power | W | watt | P | energy / time period [E/t]; 1 J/s; torque * angular velocity [τ•ω]; 1 JHz |
| N m/s | newton-meters per second | force * velocity [F•v]; 1 W |
| V A | volt amperes | electric potential * electric current [V•I]; 1 W |
| A2Ω | square ampere ohm | square electric current * resistance [I2•R]; 1 W |
| V2/Ω | square volts per ohm | square electric potential / resistance [V2/R]; 1 W |
| Radiant Flux | W | watt | Φe | radiant intensity * solid angle [IeΩ] |
| Radiant Intensity | W/sr | watts per steradian | Ie | radiant flux / solid angle [Φe/Ω] |
| Luminous Flux | lm | lumen | Φv | luminous intensity * solid angle [IvΩ]; 1 cd•sr; 1/683 W @ 540 THz |
| cd sr | candella-steradian | 1 lm; 1 cd over full sphere = 4π cd•sr ≈ 12.56643706144 lm ≈ 18.3987856726 mW @ 540 THz |
Luminous Intensity | cd | candella | Iv | luminous flux / solid angle [Φv/Ω]; 1/683 W/sr (≈ 1.46412884334 mW/sr) @ 540 THz |
| L2T-2M1-1Q0Θ0 | Specific Energy | J/kg | joules per kilogram | ? | energy / mass [E/m] = work / mass [W/m] = torque / mass [|τ|/m]; 1 N•m/kg |
| Absorbed Dose | Gy | gray | D | energy / mass [E/m]; 1 Gy = 1 J/kg = 100 RAD (radiation absorbed dose) |
| m2/s2 | square meters per square second | area / square time [A/t2] = velocity squared [v•v]; 1 Gy |
Equivalent Dose
| Sv | sievert | H | radiation weight * absorbed dose [W•D]; 1 Gy of "X-Rays" has 5.5% risk of 'eventual' cancer |
| rem | Roentgen equivalent man | 10 mSv = 10 mGy of 'X-Rays' = 1 RAD of 'X-Rays'; has 0.055% risk of 'eventual' cancer |
| L2T-2M1Q-2Θ0 | Elastance | F-1 | per farad, daraf | P | reciprocal capacitance [1/C] |
| V/C | volts per coulomb | electric potential / electric charge [V/Q]; 1 F-1 |
| J/C2 | joules per square coulomb | energy / square charge [E/Q2]; 1 F-1 |
| Ω/s | ohms per second | resistance / time period [R/t]; 1 F-1 |
| L2T-2M1Q-1Θ0 | Electric Potential, Voltage | V | volt | V | reciprocal charge affinity [1/εp]; electric field * distance [E•r]
|
| J/C | joules per coulomb | energy / electric charge [E/Q]; 1 V |
| W/A | watts per ampere | power / electric current [P/I]; 1 V |
| Wb/s | webers per second | magnetic flux / time period [ΦB/t] = magnetic potential * velocity [A•v]; 1 V |
| C/F | coulombs per farad | electric charge / capacitance [Q/C]; 1 V |
| A Ω | ampere-ohm | electric current * resistance [I•R]; 1 V |
| L2T-2M1Q0Θ-1 | Molar Heat Capacity | J/(K mol) | joules per kelvin-mole | Hm | energy / temperature / #moles [E/(T•n)] = entropy / #moles [H/n] |
| ideal gas constant | R | Boltzman's constant * Avogadro's number [kB•NA] ≈ 8.31446 J/(K•mol) |
Entropy, Heat Capacity | J/K | joules per kelvin | H, Cp, Cv | energy / temperature [E/T] |
| W/(K Hz) | watts per kelvin-hertz | power / temperature / frequency [P/(T•f) = P/(T•ν)]; 1 J/K |
| | Boltzman's constant | kB | ≈ 13.80648 yJ/K ≈ 8.61733 μeV/K |
| nat | natural unit of information | H, S | (1/loge 2) Shannon ≈ 1.442695041 Sh ≈ 13.80648 yJ/K |
Information Capacity | bit, b | binary digit | ? | binary (yes/no, on/off, etc.) information unit; 1 Sh (if both states equally likely) ≈ 693.14718056 mnat ≈ 9.569923 yJ/K |
| L2T-2M1Q0Θ0 | Energy | J | joule | E | power * time period [P•t]; 1 J = 1 Ws (watt-second) |
| kW•hr | kilowatt-hour | power * time period [P•t]; 3600 kJ = 3.60 MJ |
| cal | (little) calorie | energy to raise 1 g (1 mL) of liquid water at 1 atm by 1°C ≈ 4.184 J; 1 kcal is a 'food Calorie'
|
| K nat | kelvin-nat | temperature * delta entropy [T•δH]; ≈ 13.80648 yJ |
| Gy kg | gray-kilogram | absorbed-dose * mass [D•m]; 1 J |
| Pa m3 | pascal cubic meters | pressure * volume [|P|•V]; 1 Pa•m3 = 1 J = 4053/40 L•atm (liter-atmosphere) |
| eV | electron-volt | charge * electric potential [Q•V]; 1 e•J/C ≈ 160.217662 zJ ≈ 1.78266191•10-36 g |
| C2/F | square coulombs per farad | square charge / capacitance [Q2/C]; 1 J |
| H A2 | henry square amperes | inductance * square current [L•I2]; 1 J |
| kg m2Hz2 | kilogram square meters square hertz | rotational inertia * half of square angular frequency [I•ω2/2]; 1 J |
| kg m2/s2 | kilogram square meters per square second | square momentum / mass [p2/m]; momentum * velocity [p•v]; leverage * acceleration [d•a]; 1 J |
| potential energy | Ep | mass * height * gravity [m•r•gc] = payload distance * gravity [d•gc] |
| kinetic energy | EK | mass * half of square velocity [m•v2/2] |
| (rest)mass energy | EM | mass * square light-speed [m•c02] |
electromagnetic field energy | Eem | electric field energy + magnetic field energy [V•(E2ε+B2/μ)/2] |
| F V2 | farad square volts | Ee | electric field energy = volume * half of square electric field * permittivity [V•E2/2•ε] |
| Wb2/H | square webers per henry | Em | magnetic field energy = volume * half of square magnetic field / permeability [V•B2/2/μ] |
| lm s | lumen second | Qv | luminous energy = luminous flux * time period [Φvt] ≈ 1.46412884334 mJ of 540 THz light |
| W s | watt second | Qe | radiant energy = radiant flux * time period [Φet]; 1 J |
| Spectral Fluxν | W/Hz | watts per hertz | Φe,ν | spectral flux in frequency = radiant flux / frequency [Φe/ν = Φe/f] |
| Work | N m | newton meter | W | force * distance [F•r]; 1 J |
| C V | coulomb volt | charge * electric potential [Q•V] = charge * electric field * distance [Q•E•r]; 1 N•m |
| Torque | J/rad | joules per radian | |τ| | energy / plane angle [E/θ] |
| kg m2Hz/s | kilogram square meter hertz per second | τ | delta (angular momentum / time) [δL/δt]; 1 J/rad |
| kg m2/s2 | kilogram square meters per square second | leverage * acceleration [Λ×a]; 1 J/rad; rotational inertia * angular acceleration [I•α] |
| C V | coulomb volt | electric dipole moment * electric field [Δp×E]; 1 J/rad |
| L2T-1M1-1Q0Θ0 | Kinematic Viscosity | m2/s | square meters per second | v | viscosity / density [μ/ρ] = area / time period [A/t] |
Specific Angular Momentum | m N s/kg | meter-newton-seconds per kilogram | h | angular momentum / mass [|L|/m]; 1 m2/s |
| Specific Action | J s/kg | joule-seconds per kilogram | ? | action / mass [S/m]; 1 m2/s |
| L2T-1M0Q1Θ0 | Magnetic Dipole Moment | A m2 | ampere square meter | μ | electric current * directed area [I•S] = pole strength * distance [qm•v] |
| J/T | joules per tesla | torque / magnetic flux density [τ/B = (B×τ)/B2]; 1 Am2 |
| | magnetic moment of electron, proton, neutron | μe, μp, μn | ≈ -9.284764 yJ/T, 0.014106067 yJ/T, -0.00966236 yJ/T |
| | Bohr magneton | μB | [ eh/(4π me) ] ≈ 9.274009 yJ/T |
| | nuclear magneton | μN | [ eh/(4π mp) ] ≈ 0.005050783 yJ/T |
| L2T-1M1Q-2Θ0 | Resistance, Impedance, Reactance | Ω | ohm | R, Z, X | reciprocal of conductance|admittance|susceptance [1/(G|Y|B)]; 1 S-1 |
| V/A | volts per ampere | electric potential / electric current [V/I]; 1 Ω |
| V2/W | square volts per watt | square voltage / power [V2/P]; 1 Ω |
| W/A2 | watts per square ampere | power / square current [P/I2]; 1 Ω |
| s/F | seconds per farad | time period / capacitance [t/C]; 1 Ω |
| H/s | henries per second | inductance / time period [L/t]; 1 Ω |
| | vacuum impedance | Z0 | [ μ0c0 = 1/(ε0c0) = √μ₀/ε₀ = |E|/|H| ]; 119.91698320 π Ω ≈ 376.730313462 Ω |
| L2T-1M1Q-1Θ0 | Magnetic Flux | Wb | weber | ΦB | magnetic flux density * directed area [B•S]; 1 T•m2 (tesla square meter)
|
| J/A | joules per ampere | energy / electric current [E/I] = action / electric charge [S/Q]; 1 Wb |
| H A | henry-ampere | inductance * electric current [L•I]; 1 Wb |
| V s | volt-second | electric potential * time period [V•t]; 1 Wb |
| C Ω | coulomb-ohm | electric charge * resistance [Q•R]; 1 Wb |
| L2T-1M1Q0Θ0 | Angular Impulse | N m s | newton-meter-second | J | torque * time period [τ•t] |
Angular Momentum | m N s | meter-newton-second | L | momentum arm * tangential momentum [r×p] |
| kg m2Hz | kilogram square meter hertz | rotational inertia * angular frequency [I•ω] |
| Action | J s | joule-second | S | energy * time period [E•t] = energy / frequency [E/f = E/ν]; 1 J/Hz
|
| N s m | newton-second-meter | momentum * distance [p•r]; 1 Js |
| kg m2/s | kilogram square meters per second | leverage * tangential velocity [Λ•v]; 1 Js |
| | Planck constant | h | charge * electric potential * time period [Q•V•t]; ≈ 4.1356676 feV•s ≈ 6.6260700•10-34 Js |
| | reduced Planck constant | ℏ | charge * electric potential / angular speed [Q•V/ω = h/(2π)]; ≈ 658.211951 aeV/Hz ≈ 1.0545718•10-34 Js/rad |
| L2T0M0Q0Θ0 | Area | m2 | square meter | A, S | an area equivalent to a square with each side 1 meter in length; [S = rx × ry]
|
| L4-2T0M0Q0Θ0 | Étendue | m2sr | square meter steradian | G | area * solid angle [A•Ω] |
| L2T0M1Q0Θ0 | Rotational Inertia | kg m2 | kilogram-square-meters | I | angular momentum / angular velocity [L/α] = mass * area [m•A] |
| N m/Hz2 | newton-meters per square hertz | torque / angular acceleration [|τ/α]; 1 kg•m2 |
| L3T-2M1-2Q0T0 | Gravitational Constant | N m2/kg2 | newton-square meters per square kilogram | Gk | force * square distance / square mass [F•r2/m2]; Gk ≈ 66.74 pN•m2/kg2 |
| L3T-1M0Q0Θ0 | Fluid Flow Rate | m3/s | cubic meters per second | Q | volumetric flux * directed area [q•S] = kinematic viscosity * distance [v•r] = volume / time [V/t] |
| L3T-1M1-1Q0Θ0 | N/PI | newtons per poiseuille | force * fluidity [|F|•φ] = force / viscosity [|F|/η]; 1 N/PI = 1 m3/s = 1 kL/s = 1 kHzL
|
| L3T0M-1Q0T0 | Specific Volume | m3/kg | cubic meters per kilogram | ? | volume / mass [V/m] |
| L3T0M0Q0Θ0 | Volume | m3 | cubic meter | V | volume equivalent to a cube with each edge 1 meter in length; 1000 L
|
| L | liter | volume equivalent to a cube with each edge 10 centimeter in length; 1/1000 m3 |
| Molar Volume | m3/mol | cubic meter per mole | Vm | volume / #moles [V/nm] = molar mass / density [M/ρ] = reciprocal molar density [1/ci] |